Nonclassical Symmetry Solutions for Non-Autonomous Reaction-Diffusion Equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains

At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.

متن کامل

Uniform Attractors for Non-autonomous Nonclassical Diffusion Equations on R

where ε ∈ [0, 1], the nonlinearity f and the external force g satisfy some certain conditions specified later. This equation is known as the nonclassical diffusion equation when ε > 0, and the reaction-diffusion equation when ε = 0. Nonclassical diffusion equation arises as a model to describe physical phenomena, such as non-Newtonian flows, soil mechanic, and heat conduction (see, e.g., [1, 7,...

متن کامل

Pullback attractors for non-autonomous reaction-diffusion equations in Lp

We study the long time behavior of solutions of the non-autonomous Reaction-Diffusion equation defined on the entire space Rn when external terms are unbounded in a phase space. The existence of a pullback global attractor for the equation is established in L(R) and H(R), respectively. The pullback asymptotic compactness of solutions is proved by using uniform a priori estimates on the tails of...

متن کامل

pullback d-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains

at present paper, we establish the existence of pullback $mathcal{d}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $l^2(mathbb{r}^n)times l^2(mathbb{r}^n)$. in order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{d}$-absorbing set, is pullback $widehat{d}_0$-asymptotically compact.

متن کامل

Numerical solutions for fractional reaction-diffusion equations

Fractional diffusion equations are useful for applications where a cloud of particles spreads faster than the classical equation predicts. In a fractional diffusion equation, the second derivative in the spatial variable is replaced by a fractional derivative of order less than two. The resulting solutions spread faster than the classical solutions and may exhibit asymmetry, depending on the fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2019

ISSN: 2073-8994

DOI: 10.3390/sym11020208